Amino acid residues responsible for galactose recognition in yeast Gal2 transporter.

نویسندگان

  • M Kasahara
  • E Shimoda
  • M Maeda
چکیده

A novel, systematic approach was used to identify amino acid residues responsible for substrate recognition in the transmembrane 10 region of the Gal2 galactose transporter of Saccharomyces cerevisiae. A mixture of approximately 25,000 distinct plasmids that encode all the combinations of 12 amino acids in transmembrane 10 that are different in Gal2 and the homologous glucose transporter Hxt2 was synthesized. Selection of galactose transport-positive clones on galactose limited agar plates yielded 19 clones, all of which contained the Tyr446 residue found in Gal2. 14 of the 19 clones contained Trp455 found in Gal2, whereas the other 5 contained Cys455, a residue not found in either Gal2 or Hxt2. When Tyr446 of Gal2 was replaced with any of the other 19 amino acids, no galactose transport activity was observed in the resulting transporters, indicating that Tyr446 plays an essential role in the transport of this sugar. Replacement of 2 amino acids of Hxt2 with the corresponding Tyr446 and Trp455 of Gal2 allowed the modified Hxt2 to transport galactose. The Km of galactose transport for the modified transporter was 8-fold higher than that of Gal2. These results and other evidence unequivocally show that Tyr446 is essential and Trp455 is important for the discrimination of galactose versus glucose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tryptophan 388 in putative transmembrane segment 10 of the rat glucose transporter Glut1 is essential for glucose transport.

The molecular mechanism of substrate recognition in membrane transport is not well understood. Two amino acid residues, Tyr446 and Trp455 in transmembrane segment 10 (TM10), have been shown to be important for galactose recognition by the yeast Gal2 transporter; Tyr446 was found to be essential in that its replacement by any of the other 19 amino acids abolished transport activity (Kasahara, M....

متن کامل

Interaction between the critical aromatic amino acid residues Tyr(352) and Phe(504) in the yeast Gal2 transporter.

Three critical aromatic sites have been identified in the yeast galactose transporter Gal2: Tyr(352) at the extracellular boundary of putative transmembrane segment (TM) 7, Tyr(446) in the middle of TM10 and Phe(504) in the middle of TM12. The relationship between these sites was investigated by random mutagenesis of each combination of two of the three residues. Galactose transport-positive cl...

متن کامل

Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters

BACKGROUND Hydrolysates of plant biomass used for the production of lignocellulosic biofuels typically contain sugar mixtures consisting mainly of D-glucose and D-xylose, and minor amounts of L-arabinose. The yeast Saccharomyces cerevisiae is the preferred microorganism for the fermentative production of ethanol but is not able to ferment pentose sugars. Although D-xylose and L-arabinose fermen...

متن کامل

The Penicillium chrysogenum transporter PcAraT enables high-affinity, glucose-insensitive l-arabinose transport in Saccharomyces cerevisiae

Background l-Arabinose occurs at economically relevant levels in lignocellulosic hydrolysates. Its low-affinity uptake via the Saccharomyces cerevisiae Gal2 galactose transporter is inhibited by d-glucose. Especially at low concentrations of l-arabinose, uptake is an important rate-controlling step in the complete conversion of these feedstocks by engineered pentose-metabolizing S. cerevisiae s...

متن کامل

Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose.

All known D-xylose transporters are competitively inhibited by D-glucose, which is one of the major reasons hampering simultaneous fermentation of D-glucose and D-xylose, two primary sugars present in lignocellulosic biomass. We have set up a yeast growth-based screening system for mutant D-xylose transporters that are insensitive to the presence of D-glucose. All of the identified variants had...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 272 27  شماره 

صفحات  -

تاریخ انتشار 1997